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ABSTRACT

This report describes the results of work into the integration of structured and formal
methods, in particular, data flow diagrams and Z. Data flow diagrams are given a formal,
mathematical basis by defining rules to translate these diagrams into Z. Rules are also
given for generating a data flow diagram from a Z specification, and for checking the

compatibility of a data flow diagram and a Z specification.
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l.' Introduction

An carlier investigation into the integration of structured and formal methods for the
production of requirements specifications [1] led to the conclusion that further work is
needed in all areas of the requirements definition activity. One recommendation in
particular suggested that the translation of data flow diagrams into the formal language Z
[2] should be researched and rules derived. This report describes the results of that
research. Data flow diagrams were chosen for further study as they are in common use as
a means of describing an existing or required system, but little work has been carried out
in finding a mathematical basis for them. They feature in several systems analysis and
design methods, including SSADM (Structured Systems Analysis and Design Method)
E_B], Yourdon [4] and CORE (Controlled Requirements Expression) [5], albeit in different
orms.

The advantage in providing a mathematical basis for data flow diagrams is that they will
become unambiguous with a defined meaning, at the same time as retaining their ease of
understanding. Diagrams are often easier to understand than a mathematical specification
as the latter may appear daunting at first sight. This report, by providing a mathematical
basis, imposes one view of data flow diagrams, and this will be explained as the
formalism is developed.

The original recommendation to translate data flow diagrams into Z has been extended
and there are now three parts to the work. The first part is to produce rules for the
translation of a data flow diagram into an outline Z specification, which gives a precise
meaning to the diagram, and could be used in a formal development, if required. The
second part is to give a formal relationship between data flow diagrams and Z
specifications, which says what it means for a diagram and a Z specification to represent
the same system. The final part is to give rules for generating a data flow diagram from a
Z specification which may be used to illustrate and validate the specification.

This report has used the SSADM conventions for data flow diagrams, although the work
is more widely applicable with some minor modifications. For example, additional
constraints could be put on a diagram to incorporate desired features or a house-style.

The report is structured as follows. Section 2 formally specifies data flow diagrams in Z.
This is needed before any rules can be defined. The required parts of Z are specified in
Section 3, again in Z itself. The rules for translating a data flow diagram into a Z
specification are given in Section 4. Section 5 describes how to check that a Z
specification and a data flow diagram represent the same system. Section 6 presents the
rules for generating a data flow diagram from a Z specification, and the final section
contains some concluding remarks.

This report has been produced using the RSRE Z tool Zadok [7). Zadok is a Z editor and
also a syntax- and type-checker. Sections 2 to 6 of this report are separate Z documents.
The conclusion of each document is marked by a "keeps" statement which lists the
identifiers exported by the document. A document is imported into another one by
including the document name, which is distinguished by having a box drawn round it.

2. The Specification of Data Flow Diagrams

In SSADM, data flow diagrams have three types of diagram element. These are external
entities, processes, and datastores. External entities are those entities outside the system
boundary from which data is input to the system, or to where data from the system is
output. Processes take a set of inputs which are transformed by the process into a set of
outputs. The processes carry out the functions of the system. Processes are sometimes
referred to as transformers. Datastores, as their name implies, store the data held in the
system.

External entities are represented graphically in SSADM by circles, processes by squares,
1




and datastores by two horizontal paralle] lines joined on the left hand side by a vertical
line. Data flows show data moving around the system. They are represented by arrows,
labelled with the name of the data. The head of the arrow indicates the destination of the
data. Each data flow joins two diagram elements together, with the constraints that a data
flow cannot begin and end at the same entity, and every data flow must have a process as
either its source or its destination or both.

The interpretation put on a data flow diagram in this report is that it represents operations
being carried out on a state. The state is represented by the datastores, and the operations
by the processes. The external entities just provide or receive data. In formalizing this
interpretation in Z, specifications are needed of the relevant details of data flow diagrams
and of Z. A meaning function may then be defined from data flow diagrams to Z. This
function represents the interpretation.

To specify data flow diagrams, it is necessary to abstract away from the detail of the
diagrams. External entities, processes and datastores will be specified first, and then the
data flows between them may be specified as constraints on the set of diagram elements
making up a given diagram.

Figure 1 shows an example of a data flow diagram, using the conventions of SSADM.
This diagram shows part of a banking system, where a manager takes the name of a new
customer and adds it to a database containing the names of the current customers. This
example will be used throughout this section to illustrate the specification of data flow

diagrams.

identifier == seq Char

external_entity
[ names : F identifier

The relevant part of an external entity, from the point of view of this interpretation, is the
data which it gives rise to or uses. The data moving around the system is shown by
writing the name of the data, its identifier, on the data flow.

The example data flow diagram has one external entity, namely the customer.

| Customer : external_entity

| Customer.names = {"Customer_name")}

The data associated with the entity is just the customer’s name.

Each process takes in inputs, and produces outputs, in accordance with some rules. These
rules are represented by the name of the process. There are two sorts of input: those from
outside of the system, that is, from external entities, and those from within the system,
that is, data passed between processes directly. These are distinguished, by inputs and
int_inputs respectively. Similarly, there are two sorts of output which are also
distinguished.

process
inputs, outputs : seq identifier
int_inputs, int_outputs : seq identifier
process_name : seq Char

The inputs and outputs are treated as sequences rather than sets as this makes the
translation rules more straightforward. The ordering can be thought of as "across the page
from left to right". The sequence does not imply a particular order for processing any
more than the diagram does. Flows of data between processes and datastores are not




interpreted as inputs or outputs (of any form) as they actually represent a change of the
state data.

The example data flow diagram has one process, "Register_new_Customer"”, which has
one input from an external entity, "Customer_name”, and no internal inputs or any
outputs. The arrow on the diagram from the process to the datastore indicates that the
operation to register a new customer causes a change to the datastore, and is therefore not
an output.

P : process

p.inputs = ( "Customer_name" )

p.outputs = ()

P.int_inputs = ()

p.int_outputs = ()

P.process _name = "Register_new Customer"

The processes in a SSADM data flow diagram have two extra pieces of information
associated with them, a numeric identifier and a location. The numeric identifier is
unnecessary, as it is assumed that no two processes have the same name. The location
does add something to the specification, if it is interpreted as describing a role. That is,
states the authority needed to carry out the process. However, this information is not
appropriate to incorporate into the Z specification produced by this translation.

datastore
I— store_name : seq Char

Datastores are named. The contents of stores do not appear on a data flow diagram, so no
contents are specified.

The example data flow diagram has one datastore called "Customers".

I d : datastore

| d.store_name = "Customers"

The identifier "D1" is not recorded as it is assumed that datastores with the same name
are the same, so the identifier adds nothing.

DFD_element ::= ext & external entity )
| proc & process »
| store & datastore »

The three schemas external_entity, process, and datastore represent the three
possible type of data flow diagram element. In addition to diagram elements, a data flow
diagram contains data flows:

- data_flow
origin, destination : DFD_element
label : seg Char

origin #» destination
origin € rng proc v destination € rng proc

Each data flow has a source and destination, both of which are diagram elements. Each is
also labelled with the name of the data flowing along it. A data flow cannot return to its
own origin, and must have a process as either its origin or destination (or both).




The example data ﬂow diagram has two data flows, from the external customer to the
process, and from the process to the datastore.

I df1 : data_flow | df2 : data_flow
dfl.origin = ext (Customer) df2.origin = proc(p)
dfl.destination = proc (p) df2.destination = store(d)
dfl.label = "Customer_ name" df2.label = ""

The first data flow, from the external customer to the process, is labelled with the name
of the data concerned, that is, the customer’s name. The second flow, however, represents
a change of the state data held in the datastore, and is not labelled.

A well-formed data flow diagram consists of diagram elements connected by suitable
data flows.

= DFD
elements : F DFD_element
flows : F data_flow

V e : elements » (3 f : flows » e = f.origin v e = f.destination )
V £ : flows * ( f.origin € elements A f.destination € elements )

V e : elements; ex : external entity | e = ext ex °
ex.names = { £ : flows | e = f.origin v e = f.destination < f.label )

V e : elements; p : process [ e = proc p *

rng (p.inputs) = { £ : flows
| f.destination = e A f.origin € rng ext
¢« f.label }

{ £ : flows

| f.origin = e A f.destination € rng ext

e f.label }

rng (p.int_inputs) = { £ : flows

| f.destination = e A f.origin € rng proc
o f.label )

: flows

{ £
| f.origin = e A f.destination € rng proc
e f.label )}

rng (p.outputs) =

rng (p.int_outputs) =

The first predicate says that, for each element in the diagram, there must be a flow either
to or from it, or both. The second says that all flows must come from and go to a diagram
element. These are basic constraints to say that the diagram must be partly connected.
Additional constraints could be added to say that the diagram must contain no sources
and sinks of data, or that the diagram must be completely connected (that is, is not
capable of being split into two or more sets of elements, with no data flows between any
two elements in different sets).

The third and fourth predicates describe two checks that must be made on each data flow
diagram, to ensure that the representation in terms of elements and data flows is
consistent. The first check is that, for each external entity, the names associated with it
correspond to the labels on the data flows going to or coming from that entity. The
second check is concerned with processes. For each process, the inputs associated with
the process must correspond to the labels on the data flows from an external entity to the
ss, and the outputs associated with the process must correspond to the labels on the
data flows from the process to an external entity. Similarly, for each process, the internal
inputs associated with the process must correspond to the labels on the data flows from
another process to the process, and the internal outputs associated with the process must
correspond to the labels on the data flows from the process to another process.

The bank diagram is composed of one external entity, one process and one datastore,
together with two data flows.




| Bank : DFD

I Bank.elements = (ext (Customer), proc(p), store(d)}
Bank.flows = (dfl, df2)

This diagram is consistent, as the only input to the "Register_new_Customer" process is a
"Customer_name", which is the same as the label on the data flow from the external
Customer to the process. Also, the external Customer has only one type of data
associated with it which is the same as the label on the only data flow from it. There are
no data flows to the Customer.

Data_flow _diagram keeps identifier, external entity, process, datastore,
ext, proc, store, DFD_element, data_ flow, DFD,
Customer, p, d, dfl, df2, Bank
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3. The Specification of Z

Data_flow_diagram :Module

The purpose of this section is to specify those parts of Z that will be needed to represent
any data flow diagram. For the interpretation used, only two constructs are needed,
namely given sets and schemas.

A given set introduces a Z type. This type is constructed from the name of the set.

set == gseq Char

The name of the set is just a sequence of characters.
Schemas are more complicated and have three parts: a name, a signature and a predicate.

schema name == seq Char

The name of the schema is just a sequence of characters.

The signature of a schema is a more complicated structure. There are two sorts of
element in a signature, inclusions and declarations. Inclusions are names of other
schemas to be included, and declarations are identifier-type pairs. Identifiers have already
been defined as sequences of characters. Types are more difficult.

The definitions of types and signatures are mutually recursive, so a set of types is
introduced first as a given set, and then later constrained.

[ type ]
signature_element ::= inc & schema_name » | dec & ( identifier X type ) »
signature == [ signature_element

A signature is a set of inclusions and declarations.

type ::= given { seg Char »
| tuple & seq type »
| powerset & type )»
| schema_type & signature )

There are four sorts of types in Z: those constructed from given sets, tuples (which arise
from cross-products), powersets (for example, signature above has a powerset type),
and schema types. For example, the following schema:

example
I.a :N; b : seg N

has the following type:

schema_type (dec ( a, given (N ) ),
dec ( b, tuple ( given (N ), given (N ) ) ) )

The predicate part of a schema is straightforward.

[ predicate ]

I empty : predicate




Nothing is said about predicates, other than that they exist, as they cannot be deduced
from a data flow diagram. For the translation from data flow diagrams to Z, the empty
predicate is supplied.

schemd ey
n : schema_ name

sig : signature
pred : predicate

3

A schema has a name, a signature and a predicate.

z_element ::= given set & set » | box & schema »

Each element of the part of Z used is either a given set or a schema box.
z specification == [ z_element

A Z specification will consist of a set of these elements.

Z2_specification keeps set, schema_name, signature, signature_element,
inc, dec, type, given, tuple, powerset,
schema_type, predicate, empty, schema, z_element,
given_set, box, z_specification




4. Rules for Trahslating a Data Flow Diagram into a Z Specification

Data_flow_diagram :Module

Z_specification :Module

This section defines a function, translate, which translates a data flow diagram intoa Z
specification. Each element of the diagram is translated into one or more Z elements:
external entities are translated into given sets, processes into schemas defining operations
on states, and datastores into schemas defining part of the state. A given diagram element
and its translation are gathered together in the following schema along with the diagram
being translated:

- trans pars
d e : DFD_element
z e : F z_element
diagram : DFD

d e € diagram.elements

Taking external entities first, a given set is produced for each type of data associated with
that entity. These sets represent the types of the inputs and outputs to the system, and
their names are given by appending "_type" to the names of the data.

- trans_ext
trans pars

d e € rng ext
z e =given_set l { n : (ext™ d e).names » n "~ "_type"” } )

Using the bank example, the external entity "Customer" produces one given set,
"Customer_name_type". This set represents the only type of input to the system, and
there are no outputs.

A schema is generated for each process and Jescribes the effect the operation represented
by the process has on the state of the system, that is, which datastores are affected.
Additional given sets are generated for internal inputs and outputs.




- trans proc
trans pars

d_e = proc ( Oprocess )
z e = { box ( O6schema ) } v
given set [ { i : rng int_inputs U rng int_outputs ¢ i = "_type" } }
where
schema; process

n = process_name

sig = { data_flow; datastore
| 8data_flow € diagram.flows

store( Odatastore ) € diagram.elements
destination = d_e A origin = store ( @datastore )

= ( 3 data_flow’ | 8data_flow’ € diagram.flows
* origin’ = d e A destination’ = origin )
inc ( "S" ° store_name ) }

data_ flow; datastore
O@data_flow € diagram.flows

store ( Odatastore ) € diagram.elements

origin = d e A destination = store ( Odatastore )
» inc ( "A" T store_name ) }

v

{ i : dom inputs

* dec ( inputs i = "?", given ( inputs i = "_type" ) ) }
v

{ 1 : dom outputs

* dec ( outputs i = "!", given ( outputs i = "_type" ) ) }
v

{ 1 : dom int_inputs

*» dec ( int_inputs i, given ( Int_inputs i = "_type" ) ) }
v

{ i : dom int_outputs

* dec ( int_outputs i, given ( int_outputs i ~ " _type" ) ) ]}

pred = empty

The name of the generated schema is the same as the process name, and its signature
consists of those datastores which are read by the process but not altered in any way,
those datastores which the process does affect, and the inputs and outputs, both external
and internal. Those datastores read but not changed are prefixed by "=", while those that
are changed are prefixed by "A". The datastores that are read but not changed by a
process are found by looking for datastores in the diagram which have a data flow from
them to the process, but for which there is no flow from the process back to the datastore.
Each datastore which is a destination of a dataflow is changed. Datastores become
inclusions in the signature.

Each input is decorated with a "?", and each output with a "!". Internal inputs and outputs
are not decorated. All the inputs and outputs, both internal and external, become
declarations in the signature. Their types are found by adding “_type" to the name and
making the resulting name into a given set. If there were two data flows to or from the
process with the same name, this name would appear only once in the signature of the

ss. This is a reasonable approach as it is unlikely that two outputs, say, would be
identical. One may be a copy of the other, in which case it should be named accordingly
as "copy_of_ ..". The given sets corresponding to external inputs and outputs are
generated from external entities, while those corresponding to internal inputs and outputs
are %cncrated at the same time as the schema that uses them using this partial translation
itself.

The schema is given the empty predicate. This is because information relating to the

predicate does not appear on a data flow diagram but must be obtained from other
sources.
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The process "Register_new_Customer" from the Bank example gives rise to a schema but
no additional given sets (as there are no internal inputs or internal outputs). The schema
is given the same name as the process. This process affects the single "Customers” data
store, and has one input, namely a customer’s name.

Each datastore gives rise to a schema and a given set, which is needed to introduce the
type of the contents as the form of the information held in the store is not known from the
data flow diagram.

trans_store
trans_pars

d e = store ( Odatastore )

z e = { box ( Oschema ) ) U ( given_set ( store_name ~ "_type" ) }
where

schema
datastore

n = store_name

sig = { dec ( store_name = "_contents",
powerset ( given ( store name ~ " _type" ) ) ) }

pred = empty

The schema generated in this case has the same name as the datastore. The contents of
the datastore do not appear on the diagram, so a contents list is inserted and a
corresponding given set produced. This will need to be instantiated later. The contents
are given a powerset type, that is, the contents of a datastore are assumed to be a set of
things. As in the case of a process, the schema generated has an empty predicate.

The datastore from the Bank example produces a schema and one given set. The schema
represents the state data for the system. This data consists of a set of "Customers_type".

Bringing this all together gives the following function to translate the diagram elements
of a given diagram:

translate_element == A d_e : DFD_element; diagram : DFD ¢
(W ze : F z element | trans_ext v trans_proc v trans_store * z_e )

The function to translate a data flow diagram into a Z specification simply translates each
clement of the diagram in turn:

translate == A d : DFD * U { e : d.elements °* translate_element (e,d) }

The translation of the Bank example is as follows. The external entity gives rise to one
given set:

translate_element (ext Customer, Bank) = { given_set ("Customer_name") )
The process gives rise to one schema:
translate_element ( proc p, Bank ) = { box (s) )

where
8 : schema

s.n = "Register_new_Customer"”

s.8ig = { inc ( "ACustomers” ),
dec ( "Customer_name?", given ( "Customer_name_type" ) ) }

s.pred = empty

The datastore gives rise to one schema and one given set:

11




translate _element ( store d, Bank ) =
{ box (p), given_set ( "Customers_type"” ) }
where
p : schema

p.n = "Customers"”

p.sig = { dec ( "Customers_contents",
powerset ( given ( "Customers_type” ) ) ) )}

p.pred = empty
There is a total of two schemas and two given sets. When displayed as a Z specification,
the result will be as follows:

{ Customer_name_type, Customers_type ]

-~ Customers )

Customers contents : IP Customers_type
J

~ Register new_Customer '
ACustomers
Customer_name? : Customer_ name_type

The translation developed in this section produces a skeleton Z specification. This needs
to be instantiated by defining in more detail the types of data actually used. The required
information must be obtained from elsewhere as a data flow diagram cannot provide the
necessary information. The translation scheme provides a useful way of using a diagram
to produce a well-structured Z specification.

Translation_rules keeps trans_ext, trans_proc, trans_store,
translate_element, translate

12




§. Checking Compatibility

Data_flow_diagram :Module
Z_specification :Module
Translation_rules :Module

This section defines a relation, represents, which says what it means for a data flow
diagram and a Z specification to represent the same system. The complete Z specification
is not needed to check this compatibility. This is because a data flow diagram does not
contain any information about predicates. All that is needed of the Z specification is the
mapping from identifiers that appear in the specification to their types. This mapping will
be called a module spec. Such a mapping is produced by Zadok for each separate
document (or module) of Z successfully type-checked, and forms the Z language
specification of the module.

| module_spec : P (identifier ¥ type)

The relation is defined in parts, in a similar manner to the translation function. That is, it
considers each sort of diagram element in turn. A module specification is compatible with
an external entity if all the names associated with that entity are in the specification; with
a datastore if a schema with the same name is in the specification; and with a process if a
schema with the same name and appropriate signature is in the specification.

| _ partially represents _ : DFD_element ¢ module_spec

The parameters, that is, a diagram element and a module specification, are gathered into
the following schema:

d e : DFD_element

part_pars
[m_s : module_spec

i |

External entities are dealt with first. Each name associated with the external entity must
be in the module specification.

- part_ext
part_pars

d e € rng ext
(ext™ d e).names ¢ dom m_s

For a datastore and a module specification to be compatible there must be a schema with
the same name as the datastore.

- part_store
part_pars

d e € rng store
(store™ d_e).store_name € dom m_s
m s ( (stoxe™ d_e).store name ) € rng schema_type

For a process and a module specification to be compatible there must be a schema with
the same name as the process and with an appropriate signature. An additional function is
needed to flatten the signature of a schema, as operations are often defined in parts using
several schemas and all the identifiers from all the parts need to be considered. For

13




example, all references to unchanged datastores may be in one schema, which is then
included in the schema defining the operation. These datastores must be checked to
ensure that the operation is compatible with the diagram.,

flatten : signature — F identifier

V sign : signature -
flatten sign = ( i : identifier; t : type | dec (i,t) € sign *» i } v
U ( name : schema_name; s : schema | inc (name) € sign A sS.n = name
* { name } v flatten ( s.sig ) }

This function retrieves all the identifiers present in a schema signature together with all
those implicitly present by virtue of a schema inclusion.

- part_proc ' ]
part_pars

d e € rng proc

m s ( (proc™ d_e).process name ) = powerset (schema_type (sign))
where .
sign : signature; ids : F identifier

ids = flatten sign

V data_flow; datastore

| destination = d_e A origin = store ( Odatastore )
A = (3 data_flow’ e« origin’ = d_e A destination’ = origin)
o "Z" * store_name € ids

V data_flow; datastore

| destination = store ( Odatastore ) A origin = d e
e "A" * store name € ids

V data_flow | destination = d e A origin € rng ext
e label = "?" € ids

V data_flow | destination € rng ext A origin = d e
e label = "!" € ids

V data_flow

| destination = d_e A origin € rng proc

v destination € rng proc A origin = d e

* label € ids

S |

For each data flow representing a look up of state data, that is, the flow goes from a
datastore to the process and there is no flow from the process back to the same datastore,
the flattened signature of the schema must include "Estore_name". For each data flow
representing a change of state data, that is, the flow goes from the process to a datastore,
the flattened signature must include "Astore_name". For each input, internal input, output
and internal output, the flattened signature must contain an identifier the same as the
label on the data flow, decorated with a "?" for inputs and a "!" for outputs.

Bringing this all together gives the following definition for partial representation:

V part_pars
e d_e partially represents m s & part_ext v part_store vV part_proc

And for the overall relation,

I _ represents _ : DFD & module_spec

d : DFD; m : module_spec
d represents m ©
U {de : d.elements; ms : module_spec
| d_e partially represents ms *ms ) Cm

v

This relation says simply that a diagram is related to a module specification if that
specification contains all the sub-specifications that are related to each diagram element.

14




Relationship keeps module spec, part_ext, part store, flatten, part proc,
partially represents, represents
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6. Rules for Generatihg a Data Flow Diagram from a Z Specification

Data_flow_diagram :Module
Z_specification :Module
Relationship :Module

This section defines a function, generate, which generates a data flow diagram fromaZ
specification. A Z specification based on an example in [6] will be used to illustrate the

ss. This example specification is of a symbol table, with two operations defined on
it: one to add an entry to the table, and one to look up the value of a symbol from the
table. Two sets are introduced, representing the symbols held in the table and their

values.
[ SYM, VAL )

The symbol table itself is just a set of SYM-VAL pairs:

Symbol_Table
I-st : P ¢ SYM x VAL )

The first operation is to update the symbol table with a new SYM-VAL pair:

- Update
ASymbol_Table
sym? : SYM
val? : VAL

st’ = st © ( sym? » val? )

i ]

The second operation looks up the value of a symbol in the symbol table:

- LookUp
ESymbol_Table
sym? : SYM
val! : VAL

sym? € dom (st)
val! = st (sym?)

The diagram generating function is again defined in parts, each taking a Z specification
and generating part of the data flow diagram. Datastores are generated from those
schemas defining (part of) the state, processes from those schemas defining operations on
the state, and external entities from the inputs and outputs of the schemas defining
operations. Information from the signatures of the schemas defining operations is used to
generate the data flows.

One data store is generated for each schema representing part of the state.
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gen_datastores : z_specification =¥ PP datastore

vV 2z

: z_specification * gen_datastores z =
{ schema; datastore
| box ( Oschema ) € z
V el : sig | el € rng inc * hd (inc™? el) € { ’A’, ’S* }
store_name = n
* Qdatastore }

State schemas are identified by the absence of any schemas representing a change of state
in its signature. Each datastore is given the same name as the relevant schema. Any
predicate in the schema is ignored.

In the example Z specification, one datastore is generated from the schema
Symbol_Table. '

I d ; datastore

| d.store_name = "Symbol_Table"

This datastore is given the same name as the schema.

An external entity is generated for each input and output in a schema defining an
operation on the state. Each external entity generated will have one name associated with
it. This could be relaxed if required so that no external entities are generated. Instead data
flows representing inputs and outputs to the system could be left with one end unattached
to any diagram element, and appropriate external entities added using information
obtained from other sources.

gen_external_entities : z_specification — P external_entity

V z : z specification * gen_external_entities z =
{ schema; external entity; i : identifier; ty : type
| box ( Oschema ) € z
last i€ ( ’?’, ’!” }) A dec (i, ty ) € sig
names = { front i }
* @external_entity )

Inputs and outputs are found by looking for identifiers ending with a "?" or "!" which
ap in the signature of a schema. The type of the identifier is irrelevant, as this
information does not appear on a data flow diagram.

In the example Z specification, there are two operations defined on the state, namely
Update and LookUp. Each of these generates the same two external entities. Thus, the
generated diagram will contain the following two external entities:

| el : external entity | e2 : external_entity

| el.names = { "sym" )} | e2.names = { "val® )

A process is generated for each schema that defines an operation on the state. The

enerated process will have the same name as the schema, the inputs will be those
identifiers which end with "?" in the schema, and the outputs those which end with "!".
The order of the inputs and outputs does not matter. It is impossible to tell in general
from the Z specification whether an identifier which does not end in "?" or "I" is an
internal input or an intemmal output, so no attempt is made to distinguish the two. All
identifiers which are not inputs, outputs or inclusions are treated as internal inputs or
outputs. The predicate part of the schema is ignored.
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gen_processes : z_specification = P process

V z : z_specification * gen processes z =
{ schema; process
|box ( Oschema ) € =z
3 sn : schema_name | hd sn € ( 'A’, 'S’ } ¢ inc ( sn ) € sig
process _name = n
rng inputs = { i : identifier; ty : type
| last i = ’?’ A dec (i,ty) € sig
o front i )
rng outputs = { i : identifier; ty : type
| last i = ’!’ A dec (i,ty) € sig
e front i }
rng int_inputs U rng int_outputs =
{ i : identifier; ty : type :
| last i e ( ’?’, ’!’ }) A dec (i,ty) € sig
e 3 )
e Oprocess }

A check is made that the schema does represent an operation, by requiring that there
should be at least one inclusion in the signature which represents a change of state. The

example Z specification generates two processes, one for each operation. These are as
follows:

pl : process p2 : process
pl.process_name = "Update" Pp2.process_name = "LookUp"
pl.inputs = { "sym", "val" ) p2.inputs = ( "sym" )
pl.outputs = () p2.outputs = { "val" )
pl.int_inputs = ) p2.int_inputs = ()
pl.int_outputs = ) p2.int_outputs = ()

Data flows are generated for each read of the state (that is, for every "=datastore” in a
signature of a schema defining an operation), for each state change, and for each input
and output. There is insufficient information to join up internal flows, so these cannot be
filled in on the generated diagram but must be filled in by hand afterwards. This is
because internal flows are just undecorated identifiers, and, if the same identifier appears
in four schemas, say, there is no way of knowing which two pairs are joined by the
dataflow, nor in which direction the data are flowing. The four known cases will be
defined in turn.

Each read of the state generates a flow from the datastore to the process concerned.

gen data flows 1 == A z : z specification °
{ schema; data_flow; i : identifier
| inc i € 8ig A hd i = 'S/
origin = store ( ) ds : (gen_datastores z)
| ds.store_name = tl1 i * ds )
destination = proc ( A p : (gen_processes z)
| p.process_name = n ¢ p )
label = ""
* Odata_flow )}

Reads are identified by the presence of an inclusion of the form "Eschema_name". The
origin of the flow is the store with the corresponding name, and the destination the

process with the same name as the schema in which the inclusion was found. No label is
put on the data flow.

Each state change generates a flow from the process concerned to the relevant data store.
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gen_data flows 2 == Az:z >_specification e
schema; i : identifier; data_flow
| inc i € sig A hd i = ’A’

destination = store ( W ds : (gen_datastores z)
| ds.store_name = tl1 i « ds )
origin = proc ( | p : (gen_processes z)
| p.process name = n ¢ p )
label = ”""
» Odata flow )

State changes are identified by the presence of an inclusion of the form
"Aschema_name". The origin of the flow is the process with the same name as the
schema in which the inclusion was found and the destination the store with the
corresponding name. No label is put on the data flow.

Data flows are generated for each input:

gen data_flows 3 == A z : 2 _specification ¢
{ schema; i : identifier; data_ flow
| i€ dom ( dec™* [ sig ) ) A last i = 72/

origin = ext (U e : (gen_ external entities 2)
| e.names = (front i} * e )
destination = proc ( A p : (gen_processes z)
! p.process name = n * p )
label = front i
* Odata_flow }

Inputs are identified by the existence of a declaration in a schema, with identifier ending
with a "?". The origin of the flow is the external entity with the identifier without the "?"
as its associated name, which is also the label put on the data flow. The destination is the
process with the same name as the schema in which the input was found.

Data flows are generated for each output:

gen_data flows 4 == A z : z_specification °
{ schema; i : identifier; data_flow
| i€ dom (dec* l sig) ) A last i = 7!’
destination = ext (| e : (gen_ external entities z)
| e.names = (front i} * e )
origin = proc ( B p : (gen _processes z)
| p.process name = n * p )

label = front i
» 8data_flow }

Outputs are identified by the existence of a declaration in a schema, with identifier
ending with a "!". The destination of the flow is the external entity with the identifier
without the "!" as its associated name, which is also the label put on the data flow. The
origin is the process with the same name as the schema in which the output was found.

Bringing this all together into one rule gives:

I gen_data_flows : z_specification = [P data_flow

V z : z_specification

* gen_ data flows z = ( gen data flows 1 z )
v ( gen_ data £.lows 22z )
Vv ( gen_ data flows 3z)
v ( gen_ data ﬂows 4 z)

The example Z specification generates six data flows. The operation Update generates
one from the update process to the datastore. It also generates one from the external
entity with name "sym", and one from the external entity with name "val". The operation
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LookUp geqerates one data flow from the datastore to the lookup process, one from the
external entity with name "sym" and one to the external entity with name "val".

Bringing all the partial generating functions together gives the following function for
generating a data flow diagram from a Z specification, provided that the specification is
written in the style of state schemas and operations on (part of) the state:

generate : z specification ¥ DFD

V z : z specification °
generate z = d
where

|d:D1-‘D

d.elements = store [ gen_datastores z )
U ext [ gen external_entities z )
v proc | gen_processes z )
d.flows = gen_data_flows z

The diagram resulting from the example developed in this section is shown in Figure 2.

Translation rules have been developed not only for developing a Z specification from a
data flow diagram (in Section 4), but also for generating a data flow diagram from a Z
specification, described in this section. This latter is a useful way of illustrating a Z
specification so that the structure becomes clear. The diagram produced will aid

understanding of the specification and will help with the process of validating the
specification.

Generating rules keeps gen datastores, gen_external_entities,
gen_processes, gen_data_ flows, generate
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sym Sym

Update LookUp
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7. Conclusions

This report has presented three approaches to using a formal language, Z, with a
structured diagrammatic technique, data flow diagrams. These approaches are translating
data flow diagrams into a Z specification, checking consistency of a diagram and a Z
specification using the relationship between them, and generating a diagram from a Z
specification written in a state-based style.

A particular interpretation has been put on both data flow diagrams and Z, and this needs
to be validated. However, it is based on the standard style of using Z, that is, using
schemas to specify both the state and operations on that state. Translating a data flow
diagram into Z produces only an outline specification. This specification should be used
as a starting point, a way of structuring a specification. Conversely, generating a data
flow diagram from a Z specification may lead to a large diagram. This would occur in the
case where an operation is defined in parts, each part in a separate schema. If the
complete operation only were used in the generation process then a sensible diagram
would result. If, however, diagram elements were generated for each part, then the
resulting diagram would be cluttered. A useful approach would be to use the separate
parts of an operation to generate a separate diagram describing just that operation.

The data flow diagram may be considered to be a high level overview of the system.
Therefore, it is not surprising that a small amount of Z is produced. The usefulness of the
relationship defined is that it provides a mechanical check that the high level overview
given by a data flow diagram 1s consistent with the more detailed description given by a
Z specification. There are other information flows contained in a Z specification, for
example, the inclusions of schemas within other schemas. A similar diagram to a data
flow diagram could be automatically generated to produce a "usage tree" of the
specification. This would be of great help to reviewers of the specification as it would
help them to navigate through the specification and keep track of the usage of schemas.

The specifications given in this report could be used to build a tool to carry out the three
techniques, preferably as part of an integrated support tool. However, data flow diagrams
are only one of a number of techniques used in a structured method such as SSADM.
Other diagrammatic techniques include entity life histories and logical data structuring
(also called entity modelling). This work with data flow diagrams and Z has
demonstrated the usefulness and practicality of combining structured and formal
methods, and a follow-on to this would be to carry out similar studies for the other
diagrammatic techniques. The eventual aim is a toolset which will allow outline formal
specifications to be generated automatically from a set of diagrams, which may then be
used in a formal development, if desired, of the required system. Alternatively, the
mathematical specifications may be used to prove properties of the system. Generating
diagrams from a formal, mathematical specification will aid validation of that
specification as diagrams are easier to understand than a mathematical specifiation, and
are not so daunting at first sight.

This work, by providing a set of formal rules to translate a diagram into a formal
language, has resulted in the diagrams themselves becoming formal objects, with all the
associated benefits of precision and lack of ambiguity. Adding this formal basis has not
detracted from the readability of the diagrams. This demonstrates that formal languages
are not necessarily harder to understand. It is the mathematical symbols of current formal
languages such as Z that make them seem more daunting than they really are.
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